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Reflection and refraction at a face of a cholesteric liquid
crystal
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USA

Received 23 Aungust 1990, in final form 24 October 1991

Abstract, The theory of electromagnetic wave propagation in a cholesteric liquid crystal is
developed, in the case when the free-space wavelength of the radiation is small compared to
the pitch of the crystal. An arbitrary direction of the light is considered, Reflection and
refraction at a crystal face that is perpendicular to the cholesteric helix is studied. Explicit
formulae are found for the electric and magnetic fields of the reflected and refracted beams,

1. Introduction

Consider acholesteric liquid crystal with a face perpendicular to the helical axis. Suppose
light of some definite frequency and polarization is incident on the crystal at some
arbitrary angle. The problem considered here is to find the properties of the light
reflected from the crystal and refracted into the crystal.

There are very well known formulae for light propagation parallel to the cholesteric
axis. They were found originally by Mauguin [1], Oseen [2] and de Vries [3]; de Gennes
[4] has reviewed the development. For non-axial propagation the problem is con-
siderably more complicated. Analytically the problem is formidable, so many of the
early treatments were entirely numerical. However, Peterson [5] and Oldano et al [6]
gave analytic solutions for the propagation of the waves in the crystal. The results are
somewhat complicated, so applications are made numerically. Thus the implications of
the theory can be found in any specific case. However, brief formulae and concise
physical pictures of the reflection and refraction phenomena do not, in general, exist.

The purpose of this paper is to show that the problem can be solved analytically in
all detail in the case when the light wavelength is small compared to the pitch of the
cholesteric helix, what de Gennes calls the Mauguin limit. In contrast to the general
case, there are brief formulae for all quantities and a concise interpretation of the results.
1t is felt that this limit is of interest in itself and also will b2 valuable as a special case in
future treatments of the general problem.

The problem is solved by applying the process known as the geometric optics method
or the wkB (Wentzel-Kramers-Brillouin) method to Maxwell’s equations. In liquid-
crystal applications this method has been applied formerly by Ong and Meyer [7]to a
periodically bent nematic crystal and by Good [8] for axial propagation in a crystal with
arbitrary variation of the director from plane to plane.
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The transmitted wave propagates in the plane of the incident and reflected waves. It
is found that there is an ordinary and an extraordinary wave inside. The ordinary wave
has a simple space dependence with a definite wavevector. The extraordinary wave has
a more complicated space dependence. It does not have a definite wavevector but,
periodically in space, it coincides with a wave that does have a definite vector. Thus one
can keep track of the actual wave by following the coinciding wave, which has a well
defined phase and group velocity. It is convenient to separate the reflection-refraction
process into a component where there is only an ordinary transmitted wave and a
component where there is only an extraordinary transmitted wave, Formulae for all
components of all the waves, reflected and transmitted, are found. All the waves are
plane-polarized. There is an analogue of the Brewster’s angle effect; at two special
incident directions and polarizations relative to the director on the face, there is a
transmitted wave but no reflected wave. The method suggests when there will be no
transmitted wave, due to the Bragg reflection effect, but it does not give information on
the width of the stop bands.

2. Basjc equations

Let the coordinate axes be chosen so the crystal is in the region z > 0. The z axis is the
cholesteric axis and the reflection and refraction takes place at the z = 0 plane. Also let
the direction of the incident radiation be in the y = 0 plane, having positive x and z
components.

Maxwell’s equations, in SI units, are

V x H=aD/3t V x E=—aB/at
V-B=0 V-D=0.

As usual, complex solutions will be found and the real parts may be taken at the end of
the calculation. The time dependence exp( —iwr}is assumed, so the divergence equations
aresatisfied automatically. One uses B = p,H, asa property of the material, to eliminate
the magnetic field and reduce the problem to

(1)

V(V-E) — V2E = py@®D. (2)
For a cholesteric liquid crystal there is a tensor dielectric constant such that

D, =eyepky (3)
where

Eop = E104p + (8 — EL)naNp. (4)

Here g and ¢, are constants but the director » varies with z according to

n, = cos ¢ n, = sin @ n, =0 (5)
where

D =gz + Dy (6)

Here g may be positive or negative, depending on whether the helical-type dependence
is right-handed or left-handed; the pitch of the helix is 277/]g|; the system repeats in a
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given by (5 and (6}, in the case of a right-handed

helical dependence. The director is always parallel to

¥ the xy plane, making angle ¢ with the x axis. On the

C q"‘ crystal face, at z = 0, the angle is &. For the purpose
of illustration, the director is shown as originating at

the z axis for various values of z. However p(z) applies

x for all the molecules in a plane at a specific value of z.

J' Figure 1. The variation of the director # with z as
n

distance 7/|g|. The director is at angle ® to the x axis on the face of the crystal. The
variation of # with z is illustrated in figure 1. In detail the components of ¢,4 are

£y, = t(g) + £,) + ¥gy — £,) cos(2P)

Eyy = %(E" +&,)- é(&'n — &,) cos(2D)
=€ (7
Exy = &y, = 3(g) — £.) sin(2P) -

Exp = £ = &y, = £, =0,

¥z

Let the x dependence of the fields be exp(ilx) throughout; there is no y dependence.
The components of (2) can be written as

il8E,/8z — 3°E, [32% = Hw/c)*{(e) + £ )E; + (g — £.)[cos(2P)E, +sin(2D)E, [}

(8)
PE, ~32E,[32° = Ho/c){(gy + £)E, + (&) — £ )[sin2P)E, ~ cos(QP)E,]} (9
ildF, [oz + PE, = (w/c)*e E,. (10)
These equations suggest that the abbreviations

ki = Hw/c)(g) — €.)

k3 = (w/c)’e, o=101/K (n
be used. Then (10) is solved for E, as

E, = [i/(k3 - P)]3E,/o2) (12)
and E, and £, are to be found from the coupled set
[1/(1 — a)] (8% E,/oz%) + (k] + k3)E, + k}[cos(2D)E, + sin(ZP)E,] =0 13)

31E,[az? + (k3 + ki — ak)E, + ki[sin(2P)E, — cos(2®)E,] = 0.
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3. Approximate solutions

For the wkB approximation one makes the substitutions

E, =(E® +hED + .. )exp (}'—Jp dz)

. (14)
ORI 1 9

into (13) and develops a series solution in powers of 4. Here # is an index that identifies
the orders of the solution and then is set equal to unity. The approximation is made by
truncating the series, and the validity of the process is considered after the fact, as
discussed in the earlier paper [8]. In the application to (13}, / and w, and hence &, and
k,, are considered of order 2~ since Ix and w contribute to the phase of the waves like
[pdz/h. This is closely related to the geometrical optics approximation, where the
expansion is made on w.
The first contribution, coming from terms proportional to £72, is to be found from

[-p*/(1 — @) + &% + k3 + ki cos(Q@)]ED + ki sin(2P)EP =0
k}sinRP)ED + [—p? + ki + k3 —ak] — k3 cos(2P)]ED =0.
The next order terms, proportional to /27!, give the equations
(=p*/(1 = a) + k% + k3 + k3 cos2@))ELD + k? sin(2P)ED

= ~{1/(1 - )] (i (dp/dz)ED + 2ip(dEP [dz)) (16)

(15)

k3 sinRP)ED + [—p? + kT + k3 — ok} ~ kf cos(2@)] E(Y
= — (i (dp/dz)EP + 2ip (AdED /dz)).

Equations (15) have a sotution for E, E{" only if the determinant of the coefficients
is zero. This condition yields two possible values of p%

pi=(1—a)i3 (17)

P = (1 — (2} + k3) + 23 arsin’® @. (18)
In terms of w and ! these values are

por = e, (w/c)* - F

P = gy(w/e)® — (/e ) (e, sin® @ + g cos? P).

The wave that satisfies (17) is called ordinary because p,, is constant, the phase of the
wave depends on (Ix + p,.z — w?), and (17) gives the dispersion equation

w? = (c*[e,) (P4 + ). (19)

The wave that satisfies (18) is extraordinary. For each of the allowed values of p?, one
can solve (15); let

(o) =< () @

where m is normalized as discussed below and C is chosen so as to allow solution of the
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next order. Thatis, (16) is solvable for E{, E{" only if the solution of the corresponding
homogeneous set of equations, aiready known to be Cm, is orthogonal to the vector on
the right. This condition leads to the equation
[m2/(1 — @) + m31(dp/dz)C + 2p(dC/dz)] + pC(d/dz}{mi/(1 — &) + m3] = 0.
Evidently the appropriate normalization is

mf(l—a)+mi=1 (21)
and the necessary value of Cis

C = Cp_”z (22)
where C is a constant. The solutions of (15) with this normalization are
(mx) B ( 1-a )‘fz (—sind)‘

m,/or \l— arcos’ ® cos (13)

(mx) ( 1 ' )1/2 (1-a)cosd
my/ ex ~ \1-acos? ® (sin d ) (23)

The first approximation is found by keeping the £ terms only. The results for the
x, y components of the electric fields of the waves propagating into the material are

(E,, Cor (—sin & ) "

Ey)or T (1-acos’ D)\ cos explillx + poz — 1)) 24
(Ex) a C., ((1 — &) cos (I)) [ (! L

Eylex (Pe) 3(1 = & cos® @Y7 \sip @ SPPAET L PoctE™ wr)],

(25)

Here the integration limits have been chosen so the boundary conditions at z = Ocanbe
easily applied. The z components of the fields are to be found from (12) where, con-
sistently taking the first approximation, one replaces #/dz by ip. Thus

E, = —[lp/(k} - P)]E, (26)

in each mode. Similarly B for each mode is found from (—i/@w)V X E to be

B, -pE,

1
By = ‘C_ﬂ [p/(l - o)]E,]|. @n
B, IE,

Itis interesting that the electric field of the ordinary wave is always perpendicular to the
director, and the magnetic field of the extraordinary wave is always perpendicular to the
director.
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The behaviour of the extraordinary wave is complicated by the [p,, dz term in the
phase. However, the periodicity of the integrand suggests a further discussion of this
wave. Consider the planes where

lglz = 2mn n=0,12.. .. (28)
On these planes cos @ and sin @ always have the same values, cos @, and sin ¢,. Also
the integral between every two adjacent planes has the value
2xfig]
[ btz = orfale) (o) = aes) 7 ECm). @)
0

Here (18) was used for p., and the integral was expressed in terms of the complete eliiptic
integral of the second kind,

/2
E(m) = f (1 - msin? 8)2 d@ (30)
G

with the parameter
m={(g ~ e, )af(e) — @ey). (31)

Abramowitz and Stegun [9] give a discussion and tables of the complete elliptic integrals
E{m) and K(rn) used below. On the nth plane the value of the field is

Ey Cox ({1 = a)cos Dy
(-E!,.)cx B {ch(o)]]JZ[l — e cos? (DO]UZ ( )
X expli[lx + (4w/|q)c) (g — we, ) PE(mn — wf]}

where p.,(0) is p., at z = 0. Consequently one considers the field

EN Cex  ((1-a)cos P ) _
(Ey)co (P21 = acos? )12 Lin & ) expli(lx + rz = i) (32)

where

sin q)ﬂ

r = (2w/mc)(gy — ae,) P E(m). (33)

The point is that this field has a definite wavenumber (/. 0, #) and it coincides with the
extraordinary field on every one of the planes z = 2mn/|g|. Thus one can keep track of
the extraordinary wave by following this coinciding wave. Equation (33) gives implicitly
w as a function of / and 7, so gives the dispersion of the coinciding wave. One can take
partial derivatives through (33} to get the group velocity of the coinciding wave. The
results are

Ve = @w/fodl, = {{e(K - E) + ae E}/(ac,)' ¢ Kc

V. = (dw/ar), = (x/2) (e - @e,)'? /ey K)e (34)

where K is the complete elliptic integral of the first kind,
ni2

K(m)=I' (1 — msin? 8)"2 d@ (35)
0

and the parameter for both integrals is given by (31).
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4, Extraordinary reflection and refraction

It is convenient to consider separately the cases when there is only an extraordinary
wave transmitted into the material and when there is only an ordinary wave transmitted.
The effect of an arbitrary incident wave can be found by superposing the fields found in
these two cases.

Consider first the extraordinary wave as given by (25). On the surface of the crystal,
at z = 0, the transverse ficlds inside are

(Ex) C.. ((1 - @) cos By

E/Je [Pl ®]7(1 = acos? @) "

(Bx) =w(léextpu(0)1”2 (7% ee-em,

ei(fx - (r) (36)
$in (DQ )

B, ~acos? Do) T\ o5y
Let the incident wave, in vacuum, be
E, A
1 - . -

E = A gillr+pz—a) 37

a5 [pex(o)]]"lz(l — & cos? cpo)l/2 y (37)
Ez inc _‘(l/ﬁ)Ax
B, y _‘A—y

p/w I
Bl = [Pex(M]2(1 = & cos? Bg)'? (w/cp)PA,| eiltrpz-en
(4 i

B (U/p)A,

where A, and J‘le are constants to be determined and where p is a positive constant
satisfying the dispersion equation

w? = P + p?). (38)
Also let the reflected wave be
E, B,
1 _ o
- B i{fx — gz = wr
E, [Pex(o)]l’rz(l — @ C0os? (1)0)1;2 y_ ) e
Bafrr (/p)B., 9
B, / é).
= B - 512 B itle—pz — we)
5 [Pex(M]72(1 — @ cos? ®g)'2 (w/_CP_) x] € .
Bz refl (l/p)By

The components of the various wavevectors are illustrated in figure 2.
The boundary conditions are that the transverse components of E and B should be
continuous. They give the equations

A, + B, = Co(1 - a) cos @,

‘iy + By = C,, sin ¥y

B(=A, + B,) = —Cop.(0) sin @y

Pw/ep)* (A — B,) = Caperl0) cos $o.
These are easily solved, leading to the final results

(40)
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F4
Ordinary
transmitted
1t
&,
8
{ {
F B, 18, _ x
Gre Wi £ Figure 2. Wavevectors in the plane of reflection and
refraction, for the incident beam, the reflected beam,
incident Reflected and the ordinary transmitted beam.
A, =1 = a+ ppe(0)/(w]/c)?]Cex cos By
A, = Y1 + po0)/p]Cersin @y an
é: = é[]' —a - fp“(O)/(w/C)zlécx cos P,
g = ﬂl - pex(O)f',ﬁ]écx sin "DO
where
Pex(0) = (w/c)[(1 — @)ey + (&) — £1)arsin? D] (42)
P = (w/c)(1 - ae,)". (43)

It is interesting that the A and B are real so the fields are all plane-polarized.

A question is how to find the angle of refraction, given the angle of incidence. For
the incident wave the dispersion equation is (38), so the group velocity is ¢*/w times
(£, 0, 7). The angle of incidence 8, is the angle between the group velocity and the z axis.
Forit

sin? 8, =P/(P + 5%y = ¢, (44)

For the transmitted wave the group velocity of the coinciding wave is known, equation
(34). Consequently, for the angle of refraction,

tan 6, = V,/V, = (2/m)[E + (g /ae ) (K = E))/(&/ae.) —1]'". (45)

Given 8, one finds & from (44) and then &, from (45). For small angles, nearly normal
incidence, this gives

8. = (g + EJ.)/ng.Eéfz]Bi- (46)

There is a special set of conditions, at which there is no reflected wave. All the
incident light is transmitted into the crystal. Consider sin & = 0, so the director at the
entry face is in the plane of the reflection and refraction. Then, from (41}, it is seen that
B,iszeroandthat B,iszeroifthe (1 — ) and pp.,(0)/(w/c)* terms cancel. This translates
into the condition

sin 6, = [(eye, —.)/(ge. — D2, (47)

In summary, if the incident wave is at this angle, plane-polarized paralle] to the plane of
refraction, and if the director is parallel 1o the plane of refraction on the crystal face,
then there is no reflected wave.
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5. Ordinary reftection and refraction

The same process applies in the case when there is only the ordinary wave transmitted
into the material. Let this wave be given by (24). With the dispersion of (19), the group
velocity is ¢?/we, times (1, 0, p,.), 0, for the angle of refraction,

sin? 8, = P/(I* + p2) = a. (48)

Equations (44) and (48) together imply that Snell’s law holds with £, as the effective
dielectric constant,

sin 8, = £} sin 8, (49)

Let the electric fields of the incident and reflected waves be

E, F,

1 ' i 5z — o
E) = (1 — acos? dy)'? F, gllizrpz=an (50)
Ez inc _(l/p_)ﬁx
EI C_;X

1 ~ i{fx— pz - w
By = (1 — acos? Py)2 G, gile=pemon, (1)
E,[cn (1/5)G,

The results of matching the boundary conditions are

Fo= =41 + £,5/por) Cor sin
F, =31 + por/ 5)Cor cos @y

Gy = —H1 — £.5/por)Corsin @y
G_’y =31 = por/B)Cor cOs Byy.

(52)

Again there is a special situation in which there is no reflected wave. If cos @, is zero
and the angle of incidence satisfies

sin 8, ={e, /(1 + £,)]'? (53)

then both G, and G, are zero. Thus if the incident wave is at this special angle, plane-
polarized parallel to the plane of refraction, and if the director is perpendicular to the
plane of refraction on the crystal face, then there is no reflected wave.

6. Discussion

The system is linear, so a linear combination of sclutions is also a solution. Which linear
combination occurs depends on how the system is excited. For given frequency and
angle of incidence, fixing w, ] and w, the general solution of the reflection-refraction
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problem is the sum of the ordinary and extraordinary solutions with arbitrary values of
C,, and C,,. The incident radiation in this general case is

/z{p (0)]]/1 [l —a+t ﬁpex(o)/(w/c)z] cos CD{)
(1 ‘ixa’Cc::2 0] )1/" [1 +ch(0)/15] sin @, gllix +pz - a)
E, finc —([/[5)[1 -+ ﬁpu(())/(w/c)zl cos g

—(1 + elﬁ/por) sin Dy
(1 + por/P) cos @, gills+ gz~ n)

(/B)(1 + £.5/por) sin g

COI'/Z
(1 — acos® dy)'?

The first term here is found by substituting A, and A from (41) into (37) and the second
term by substituting F, and F from (52) into (50). As an example, if one makes the
special choice

= [P“(OJ]]"ZG + Elﬁ/por) sin (1)0
Cor = [1 —a+ .ﬁpcx(o)/(w/c)z] cos Py

then the incident beam has the form

E, 0
E,| =(const)| 1 |eilk+sz-en
Ez ine 0

so is plane-polarized in the y direction, normal to the plane of reflection and refraction.
The reflected radiation is also plane-polarized; a formula for it would be complicated.
The transmitted radiation has two components with different group velocities and angles
of refraction, as given in (45) and (48). For any incident polarization of interest, one can
determine appropriate values of C,, and C,, and find the reflected and transmitted
radiations.

The ideas developed in [8] about the applicability of the approximation used above
will apply here similarly. The approximation requires that the local z wavelength A4 =
2x/p be slowly varying, |dA/dz| < 4w, and that the free-space wavelength be small
compared to the pitch of the director, (¢/w)|dP/dz| < 1.

For the ordinary wave the local z wavelength is constant, so it is slowly varying as
required. For the extraordinary wave one finds

(1/4) [dAe/dz| = ki igla sin(2®)/2p3, (54)

which is of order |g|/(w/c). Thus ali conditions are met, and the approximation is valid,
if only |q|/(w/c) is smali. This is the ratio of the free-space wavelength 2mc/w to the
pitch 2:z/|g} of the director.
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This applicability is illustrated by the case of straight-through propagation, where
the exact solution is known. As reviewed by de Gennes [10] that solution is

Ex = %(aeiqz + be—iqz) ei(pz-m!]

E, = —}i(ae' — be %) glPz—en (53)
where the dispersion relation is

(p* -k -3+ 47 —~49°p* — ki =0. (56)
This has the two solutions

p? =k + k3 + q* = (4g°kT + 4g7kE + kY2 (57
The & are proportional to w/c so for small |g|/(w/c) this becomes

p? = (ki + k3 = k{)[1 + O(c*q*/0?)). (58)

There is agreement with (18) and (17) which, when / and consequently « are zero,
become

pr=2%+k pr=#k (59)

This approximation does not give information on the widths of the stop bands but it
does give an estimate of their location. It is expected that the approximation will break
down, and there will not be propagating solutions, if the phase change of a propagating
wave in a periodicity distance m/|g| were to be an integer, say 7, times x. For the
extraordinary wave, as given by (25), the condition is

w/\ql
j Pz = fim
0

or
(w/|qic) () = ae,)2E(m) = fix. (60)
For the ordinary wave of {24) the condition is
pot/\q| = fim. (61)

One can express p,, as
Po = (w/c)eY{* cos 8,
so the condition is equivalently
2Anflg)) cos 8, = A(2me 7 ¢/ w) (62)

which is the Bragg reflection rule for an effective wavelength (27e7"2¢c/w).

7. Conclusions

In summary, a complete solution for the electromagnetic waves in the crystal, leading
to concise new formulae for all the fields, has been found, in the limit when the free-
space wavelength of the radiation is small compared to the pitch of the crystal, It is found
that, in this limit, there are two types of solution: an ordinary wave with electric field
always perpendicular to the director and an extraordinary wave with magnetic field
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always perpendicular to the director. The ordinary wave has a definite phase and group
velocity; the extraordinary wave does not. However, there is a wave that coincides
periodically with the extracrdinary wave and can be used to keep track of the extra-
ordinary effects, As a result of having this complete solution, one can analyse the
reflection-refraction process in more detail than previously known:

(i) Itisfound that, in general, a narrow incident beam will give rise to two transmitted
beams, ordinary and extraordinary, travelling separately in different directions. This is
the same phenomenon as occurs with 2a homogeneous non-isotropic uniaxial crystal.

(ii) The ordinary and extraordinary angles of refraction are determined, equations
(45), (46) and (49).

(iii) It is discovered that there are analogues of the Brewster’s angle phenomenon,
special conditions at which there is no reflected radiation, equations (47) and (53).

(iv) The amplitudes of the ordinary and extraordinary transmitted waves are found,
for any direction and polarization of the wave incident on the crystal face.

As another aspect of the complete solution, formulae for the frequencies of the stop
bands, at which there are no propagating solutions, are found, as a function of the angle
of incidence. equations (60) and (62). Incident radiation at these angles and frequencies
will be anomalously reflecied from the crystal.
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