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Abstract. The theory of electromagnetic wave propagation in a cholesteric liquid crystal is 
developed, in the case when the free-space wavelength of the radiation issmall compared to 
the pitch of the cqxtal. An arbitrary direction of the light is considered. Reflection and 
refraction at a crystal face that is perpendicular to the cholesteric helix is studied. Explicit 
formulae are found for the electric and magnetic fields of the reflected and refracted beams. 

1. introduction 

Consideracholestericliquidcrystal with afaceperpendicular to the helical axis. Suppose 
light of some definite frequency and polarization is incident on the crystal at some 
arbitrary angle. The problem considered here is to find the properties of the light 
reflected from the crystal and refracted into the crystal. 

There are very well known formulae for light propagation parallel to the cholesteric 
axis. They were found originally by Mauguin [ 11, Oseen [2] and de Vries [3]; de Gennes 
141 has reviewed the development. For non-axial propagation the problem is con- 
siderably more complicated. Analytically the problem is formidable, so many of the 
early treatments were entirely numerical. However, Peterson [5] and Oldano et U! [6] 
gave analytic solutions for the propagation of the waves in the crystal. The results are 
somewhat complicated, so applications are made numerically. Thus the implications of 
the theory can be found in any specific case. However, brief formulae and concise 
physical pictures of the reflection and refraction phenomena do not, in general, exist, 

The purpose of this paper is to show that the problem can be solved analytically in 
all detail in the case when the light wavelength is small compared to the pitch of the 
cholesteric helix, what de Gennes calls the Mauguin limit. In contrast to the general 
case, there are briefformulaefor allquantitiesandaconciseinterpretationoftheresults. 
It is felt that this limit is of interest in itself and also will be valuable as a special case in 
future treatments of the general problem. 

The problem is solved by applying the process known as the geometricoptics method 
or the WKB (Wentzel-Kramers-Brillouin) method to Maxwell's equations. In liquid- 
crystal applications this method has been applied formerly by Ong and Meyer [7] to a 
periodically bent nematic crystal and by Good [8] for axial propagation in a crystal with 
arbitrary variation of the director from plane to plane. 
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The transmitted wave propagates in the plane of the incident and reflected waves. It 
is found that there is an ordinary and an extraordinary wave inside. The ordinary wave 
has a simple space dependence with a definite wavevector. The extraordinary wave has 
a more complicated space dependence. It does not have a definite wavevector but, 
periodically in space, it coincides with a wave that does have a definite vector. Thus one 
can keep track of the actual wave by following the coinciding wave, which has a well 
defined phase and group velocity. It is convenient to separate the reflection-refraction 
process into a component where there is only an ordinary transmitted wave and a 
component where there is only an extraordinary transmitted wave. Formulae for all 
components of all the waves, reflected and transmitted, are found. All the waves are 
plane-polarized. There is an analogue of the Brewster’s angle effect; at two special 
incident directions and polarizations relative to the director on the face, there is a 
transmitted wave but no reflected wave. The method suggests when there will be no 
transmitted wave, due to  the Bragg reflection effect, but it does not give information on 
the width of the stop bands. 

2. Basic equations 

Let the coordinate axes be chosen so the crystal is in the region z > 0. The z axis is the 
cholesteric axis and the reflection and refraction takes place at the z = 0 plane. Also let 
the direction of the incident radiation be in the y = 0 plane, having positive x and z 
components. 

Maxwell’s equations, in SI units, are 

As usual, complex solutions will be found and the real parts may be taken at the end of 
thecalculation. The timedependenceexp( -iwr)isassumed,sothedivergenceequations 
aresatisfied automatically. One usesB = @a, asapropertyofthematerial, toeliminate 
the magnetic field and reduce the problem to 

V(V . E )  - V Z E  = p,pzD.  

Dw = E0&c$E8 (3) 

(4) 

n, = cos CJ a, = sin 4? n , = O  (5) 

@ = qz + @o. ( 6 )  

(2) 

For a cholesteric liquid crystal there is a tensor dielectric constant such that 

where 

= ~ ~ 6 ~ 8  + (EII - &l)nmn,+ 

Here and cl are constants but the director n varies with z according to 

where 

Here q may be positive or  negative, depending on whether the helical-type dependence 
is right-handed or left-handed; the pitch of the helix is 2n/Iql; the sy2tem repeats in a 
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Figure 1. The variation of the director n with i as 
given by (5) and (6). in the case of a right-handed 
helical dependence. The director is always parallel to 

y thexyplane,makingangle~Dwiththexaxis. Onthe 
crystal face, at z = 0, the angle is Oo. For the purpose 
of illustration, the director is shown as originating at 
thezaxisforvariousvaluesoli. Howevern(:) applies 
forall themoleculesina planeataspecificvalueof:. 

distance 3t/lq/. The director is at angle Qo to the x axis on the face of the crystal. The 
variation of n with I is illustrated in figure 1. In detail the components of E,# are 

Let the x dependence of the fields be exp(i1x) throughout; there is noy dependence. 
The components of (2 )  can be written as 

ilaE,/az - aZE,/az2 = ! Z ( W / C ) ~ { ( E ~ ~  +&,)E, + ( E [ ,  - E ~ ) [ c o s ( ~ Q ) E ~  + sin(2@)EY]} 

(8) 

(9)  12Ey - d2EY/ar2 = ~ ( w / c ) ~ { ( E I I  + sL)Ey + (&,I - s,)[sin(2Q)E, - cos(2Q)Ey]} 

il JE,/Jz + /*E,  = ( W / C ) ~ E , E , .  (10) 

These equations suggest that the abbreviations 

be used. Then (10) is solved for E, as 

E ,  = [il/(k: - 1 2 ) ]  (dE, /az)  (12) 

and E, and Ey are to be found from the coupled set 

[l/(l - a) ] (a2E, /dz2 )  + (k: + k:)E,  + k:[cos(2Q)E, + sin(2Q)Ey] = 0 

a2E, /dz2  + (k:  + k: - &:)E, + k:[sin(ZQ)E, - cos(2Q)Ey] = 0. 
(13) 
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3. Approximate solutions 

For the WKB approximation one makes the substitutions 

E,=(EiW + h E i l ) + . . . ) e x p ( i f p d ~ )  

E, = (Elo) + hE!,’) + . . .) exp - p dz 

into (13) and develops a series solution in powers of h. Here h is an index that identifies 
the orders of the solution and then is set equal to unity. The approximation is made by 
truncating the series, and the validity of the process is considered after the fact, as 
discussed in the earlier paper [8]. In the application to (13). 1 and w ,  and hence k,  and 
k2. are considered of order h-] since Lu and wt contribute to the phase of the waves like 
.fpdz/h. This is closely related to the geometrical optics approximation, where the 
expansion is made on w. 

[-$/(I - CY) + k: + k: t- k: cos(2@)]Eio) + k: sin(2@)Elol = 0 

k: sin(2@)Eto) + [ -p2 + k: + k: --cuk: - k: COS(~@)]E$~) = 0. 
The next order terms, proportional to h-l ,  give the equations 

( -p2/(1 - CY) + k: + kt + k: c0s(2@))Ei1) + k: sin(Z@)EY) 

The first contribution, coming from terms proportional to h-2, is to be found from 

(15) 

= -[l/(l - a)](i (dp/dr)Ey) + 2ip(dEi0)/dz)) (16) 

k: sin(2@)E$11 + [ - p 2  + k: + k: - ak: - k: cos(2@)] 

= -(i (dp/dz)E$ + 2ip (dEiO’/dz)). 

Equations (15) have a sotution for Elo), E$‘) only if the determinant of the coefficients 
is zero. This condition yields two possible values of$: 

p:r = (1 - a)k: 
pt. = (1 - ru)(2ki + k:) + 2k:cusin’Q. 

pZor = el(w/c)z - 12 

p: ,  = E , ( w / c ) ~  - ([Z/cL)(el. sin2 @ + €1 cos2 @). 

(17) 

(18) 
In terms of w and 1 these values are 

The wave that satisfies (17) is called ordinary because pOr is constant, the phase of the 
wave depends on (Lu + porz - wt),  and (17) gives the dispersion equation 

w2 = (C’/El)@:r + 12).  (19) 
The wave that satisfies (18) is extraordinary. For each of the allowed values ofp2, one 
can solve (15); let 

where m is normalized as discussed below and Cis chosen so as to allow solution of the 
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next order. That is, (16) is solvable for E y )  only if the solution of the corresponding 
homogeneous set of equations, already known to be Cm, is orthogonal to the vector on 
the right. This condition leads to the equation 

[m:/(l - a)  + m:][(dp/dz)C + 2p(dC/dz)] + pC(d/dz)[mS/(l - a) + m:] = 0. 

Evidently the appropriate normalization is 

mZ,/(1 - a)  + m: = 1 (21) 

and the necessary value of C is 

c =  Cp-V 

where c i s  a constant. The solutions of (15) with this normalization are 

The first approximation is found by keeping the Go) terms only. The results for the 
x ,  y components of the electric fields of the waves propagating into the material are 

Here the integration limits have been chosen so the boundary conditions at z = 0 can be 
easily applied. The z components of the fields are to be found from (12) where, con- 
sistently taking the first approximation, one replaces 8 / 8 2  by ip. Thus 

E ,  = -[I&: - P)]Ex (26)  

in each mode. SimilarlyB for each mode is found from (-i/w)V X E to be 

It is interesting that the electric field of the ordinary wave is always perpendicular to the 
director, and the magnetic field of the extraordinary wave is always perpendicular to the 
director. 
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The behaviour of the extraordinary wave is complicated by the Jpexdz term in the 
phase. However, the periodicity of the integrand suggests a further discussion of this 
wave. Consider the planes where 

1911 = b n  n = O , 1 . 2  . . . . .  ( 2 8 )  

On these planes cos CP and sin 0 always have the same values, cos CPo and sin @,). Also 
the integral between every two adjacent planes has the value 

j0k”9’ptxd~ = ( 4 U / ( q l C ) ( E l l  - C%l)’”E(m). (29) 

Here(18) wasused forp,,and theintegralwasexpressed in termsofthe completeelliptic 
integral of the second kind, 

.!2 

n 
E(m) = (1 - m sin’ 8)ln d 8  (30) 

with the parameter 

ffl = (Ell - E I ) U / ( E I I  - ( Y E A ) ,  (31) 

Abramowitz and Stegun [9] give a discussion and tablesof the complete elliptic integrals 
E(m) and K(m) used below. On the nth plane the value of the field is 

x exp{i[h + (4u / lq lc ) (q  - U E J ’ / * E ( V Z ) ~ Z  - ut]] 

wherep,,(O) isp,, at z = 0. Consequently one considers the field 

where 

r = ( k J / X C ) ( E [ i  - ( Y E A ) ” E ( ~ ) .  (33) 
The point is that this field has a definite wavenumber (I, 0, r )  and it coincides with the 
extraordinary field on every one of the planes z = 2nn/lql. Thus one can keep track of 
the extraordinary wave by following this coinciding wave. Equation (33) gives implicitly 
was a function of I and r. so gives the dispersion of the coinciding wave. One can take 
partial derivatives through (33) to get the group velocity of the coinciding wave. The 
results are 

v, = (8U/8Olr = {[Eii(K - E )  + ( Y C ~ E ] / ( ( Y F , ) ’ ” E l i ~ C  

vz = (dU/ar)l ,  = { ( Z / Z ) ( E i l  - LYEI)”2/E/if+ (34) 

where K is the complete elliptic integral of the first kind. 
X!’ 

K(nz) = (1 - t u s h 2  d 8  

and the parameter for both integrals is given by (31) 

(35) 
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4. Extraordinary reflection and refraction 

It is convenient to consider separately the cases when there i s  only an extraordinary 
wave transmitted into the material and when there isonly an ordinary wave transmitted. 
The effect of an arbitrary incident wave can be found by superposing the fields found in 
these two cases. 

Consider first the extraordinary wave as given by (25). On the surface of the crystal, 
at z = 0. the transverse fields inside are 

where 
satisfying the dispersion equation 

Also let the reflected wave be 

and AY are constants to be determined and where p is a positive constant 

mz = C 2 ( P  + p2). (38) 

The components of the various wavevectors are illustrated in figure 2. 

continuous. They give the equations 
The boundary conditions are that the transverse components of E and B should be 

A, + E, = Cex(l - a) cos @ o  

A, + By = C,, sin mo 
p(-Ay + By) = -C,gg,(o) sin 40 

p(w/cp ) ’ (A ,  - E , )  = ce$g,,(o) cos @o 

These are easily solved, leading to the final results 
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I Ordinurv 

P P 

Incident Reflected 

Figure 2. Wavevectors in the plane of reflection and 
refraction. for the incident beam, the reflected beam, 
and the ordinary transmitted beam. 

Ax  = t[ 1 - 0 + ppp,(O)/(w/c)*]Cex cos Q 0  

A, = #[I + p,(O)/p]C, sin 4 0  

Er = d[l - (Y - ~ ~ p , ( 0 ) / ( w / ~ ) z l ~ e x  cos 4 0  

EJ = $[I - p,(~)/p]C~,,sin o0 

(41) 

where 

P,,(O) = (w/c)[(I - a)q + (q - cL)asinZ ( P O ] ” *  (42) 

p =  (+)(I - (Y&J/z.  (43) 
It is interesting that the A and 5 are real so the fields are all plane-polarized. 

A question is how to find the angle of refraction, given the angle of incidence. For 
the incident wave the dispersion equation is (38), so the group velocity is c2/w times 
( I ,  0, fi. The angle of incidence 0; is the angle between the group velocity and the z axis. 
For it 

sin2 ei = P/ ( l z  + p z )  = (44) 
For the transmitted wave the group velocity of the coinciding wave is known, equation 
(34). Consequently, for the angle of refraction, 

tan er = VJV,  = (z/~)[E + ( E , / L Y E ~ ) ( K  - E ) ] / [ ( E I / ( Y E J  -11’”. (45) 
Given Bi, one finds (Y from (44) and then Or from (45). For small angles, nearly normal 
incidence, this gives 

(46) 
There is a special set of conditions, at which there is no reflected wave. All the 

incident light is transmitted into the crystal. Consider sin ‘Do = 0, so the director at the 
entry face is in theplane of the reflection and refraction. Then, from (41), it is seen that 
5, iszeroandthat BJszeroifthe (1 - n) andpp,(0)/(o/c)2termscancel.Thistranslates 
into the condition 

er = [(&I, + & J / 2 & L & B R I ~ i ~  

sin ei = [ (qe1 - & , ) / ( E ~ ~ E ~  - l)]’/z. (47) 
In summary, if the incident wave is at this angle, plane-polarized parallel to the plane of 
refraction, and if the director is parallel to the plane of refraction on the crystal face, 
then there is no reflected wave. 
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5. Ordinary reflection and refraction 

The same process applies in the case when there is only the ordinary wave transmitted 
into the material. Let this wave be given by (24). With the dispersion of (19), the group 
velocity isc2/oe, times ( I ,  O,p,,), so, for the angle of refraction, 

(48) 

Equations (44) and (48) together imply that Snell's law holds with si as the effective 
dielectric constant, 

sinz e, = 1 2 / ( P  + &) = CY. 

sin ei = ~ l j Z  sin 6,. (49) 

Let the electric fields of the incident and reflected waves be 

The results of matching the boundary conditions are 

Fx = -$(I + eS/por)Cobrsin C J ~  

Fy = $0 + por/fiCo, cos Do 

G, = -k(l - e ~ / p , , ) G s i n  
G, =*(1 -po r / f i~~rcosCJ" .  

Again there is a special situation in which there is no reflected wave. If cos CJo is zero 
and the angle of incidence satisfies 

sin ei = [eL/(1 + eL)]'/* (53) 

then both Grand Cy are zero. Thus if the incident wave is at this special angle, plane- 
polarized parallel to the plane of refraction, and if the director is perpendicular to the 
plane of refraction on the crystal face, then there is no reflected wave. 

6. Discussion 

The system is linear, so a linear combination of solutions is also a solution. Which linear 
combination occurs depends on how the system is excited. For given frequency and 
angle of incidence, fixing o, I and CY, the general solution of the reflection-refraction 
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problem is the sum of the ordinary and extraordinary solutions with arbitrary values of 
CO, and ccx. The incident radiation in this general case is 

The first term here is found by substituting.4, andAy from (41) into (37) and the second 
term by substituting Fx and Fy from (52) into (50). As an example, if one makes the 
spccial choice 

cCx = b,,(0)I1’*(1 + E @ / P ~ J  sin Qn 

cor = 11 - a + ppcx(0)/(O/c)2] cos of) 

then the incident beam has the form 

so is plane-polarized in they direction, normal to the plane of reflection and refraction. 
The reflected radiation is also plane-polarized: a formula for it would be complicated. 
The transmittedradiation hastwo componentswithdifferent groupvelocitiesandangles 
of refraction, as given in (45) and (48). For any incident polarization of interest, one can 
determine appropriate values of and CO, and find the reflected and transmitted 
radiations. 

The ideas developed in 181 about the applicability of the approximation used above 
will apply here similarly. The approximation requires that the local z wavelength A = 
Zz/p be slowly varying, IdA/drl < 4rr, and that the free-space wavelength be small 
compared to the pitch of the director, (c/w)ldQ/dzl < 1. 

For the ordinary wave the local z wavelength is constant, so it is slowly varying as 
required. For the extraordinary wave one finds 

(1/3.r) Idh,,/dzl= k:/ql~~sin(2Q)/2p~, (54) 

which is of order Iql/(w/c). Thus all conditionsare met, and the approximation isvalid, 
if only /q l / (m/c)  is small. This is the ratio of the free-space wavelength 2nc/w to the 
pitch 2x/lq/ of the director. 
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This applicability is illustrated by the case of straight-through propagation, where 
the exact solution is known. As reviewed by de Gennes [lo] that solution is 

E ,  = t(aek= + be-’qz) e i ( P 2 - 4  

E = -ti(aeiqi - be-iqz) ei@i-wr)  (55) 
Y 

where the dispersion relation is 

@’ - k: - ki  + q2)2  - 4q2p2 - k! = 0. 

This has the two solutions 

p 2  = k: + k: + q2 2 (4q2k: + 4q2k$ + k:)‘’2. 

p 2  = (k:  + kI k k:)[l + O(c2q2/w2)J. 

(57) 

(58) 

The k are proportional to w/c so for small lql/(w/c) this becomes 

There is agreement with (18) and (17) which, when 1 and consequently (Y are zero, 
become 

(59) 2 - k2 p 2  = 2k: + kZ, P - 2‘ 

This approximation does not give information on the widths of the stop bands but it 
does give an estimate of their location. It is expected that the approximation will break 
down, and there will not be propagating solutions, if the phase change of a propagating 
wave in a periodicity distance n/lq1 were to be an integer, say 5, times n. For the 
extraordinary wave, as given by (25), the condition is 

per dr = fix 

or 

(2w/lq/c)(&ll - Lue,)”2E(m) = 6 ~ .  

PO&/l41 = Ex. 

por = (fJJ/C)&lj2 cos 0r 

For the ordinary wave of (24) the condition is 

One can expressp,, as 

so the condition is equivalently 

2(n/\qI) cos 0r = n ( k & ; l % / W )  

which is the Bragg reflection rule for an effective wavelength ( 2 x ? ~ ~ ’ ~ ~ c / w ) .  

7. Conclusions 

In summary, a complete solution for the electromagnetic waves in the crystal, leading 
to concise new formulae for all the fields, has been found, in the limit when the free- 
space wavelength of the radiation is small compared to the pitch of the crystal. It is found 
that, in this limit, there are two types of solution: an ordinary wave with electric field 
always perpendicular to the director and an extraordinary wave with magnetic field 
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always perpendicular to the director. The ordinary wave has a definite phase and group 
velocity; the extraordinary wave does not. However, there is a wave that coincides 
periodically with the extraordinary wave and can be used to keep track of the extra- 
ordinary effects. As a result of having this complete solution, one can analyse the 
reflection-refraction process in more detail than previously known: 

(i) Itisfound that,ingeneral,anarrowincident beamwillgiverisetotwotransmitted 
beams, ordinary and extraordinary, travelling separately in different directions. This is 
the same phenomenon as occurs with a homogeneous non-isotropic uniaxial crystal. 

(ii) The ordinary and extraordinary angles of refraction are determined, equations 
(45), (46) and (49). 

(iii) It is discovered that there are analogues of the Brewster's angle phenomenon, 
special conditions at which there is no reflected radiation, equations (47) and (53). 

(iv) The amplitudes of the ordinary and extraordinary transmitted waves are found, 
for any direction and polarization of the wave incident on the crystal face. 

As another aspect of the complete solution, formulae for the frequencies of the stop 
bands, at which there are no propagating solutions, are found, as a function of the angle 
of incidence. equations (60) and (62). Incident radiation at these angles and frequencies 
will be anomalously reflected from the crystal. 
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